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Abstract: There is little information available on the effect of Gestational diabetes mellitus (GDM)
treatment (diet or insulin) on placental lipid carriers, which may influence fetal fat accretion. Insulin
may activate placental insulin receptors protein kinase (AKT) and extracellular signal regulated
kinase ERK mediators, which might affect lipid metabolism. Placenta was collected from 25 control
women, 23 GDM-Diet and 20 GDM-Insulin. Western blotting of insulin signaling mediators and
lipid carriers was performed. The human choricarcinoma-derived cell line BeWo was preincubated
with insulin inhibitors protein kinase (AKT) and extracellular signal regulated kinase (ERK) and
ERK inhibitors to evaluate insulin regulation of lipid carriers. Maternal serum insulin at recruitment
correlated to ultrasound fetal abdominal circumference in offspring of GDM and placental endothelial
lipase (EL). Lipoprotein lipase in placenta was significantly reduced in both GDM, while most of
the other lipid carriers tended to higher values, although not significantly. There was a significant
increase in both phosphorylated-Akt and ERK in placentas from GDM-Insulin patients; both were
associated to placental fatty acid translocase (FAT), fatty acid binding protein (A-FABP), and EL.
BeWo cells treated with insulin pathway inhibitors significantly reduced A-FABP, fatty acid transport
protein (FATP-1), and EL levels, confirming the role of insulin on these carriers. We conclude that
insulin promotes the phosphorylation of placental insulin mediators contributing to higher levels of
some specific fatty acid carriers in the placenta and fetal adiposity in GDM.
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1. Introduction

The mechanisms that enhance fetal fat accretion in well glucose-controlled Gestational diabetes
mellitus GDM pregnancies are largely unknown. GDM alters the placental structure which may affect
nutrient transport to the fetus [1]. Fatty acid uptake by the placenta requires the activity of several
lipases including lipoprotein lipase (LPL) and endothelial lipase (EL), which produce non-esterified
fatty acids (NEFA) [2,3]. NEFA can enter the placenta by simple diffusion or by using fatty acid carriers
like fatty acid translocase (FAT/CD36) [4], plasma membrane fatty acid-binding protein (FABPpm) [5]
or fatty acid transport proteins (FATPs) [6]. Once fatty acids are in the cytosol, they bind to fatty
acid binding proteins (FABP) [7] before being transferred to the fetal circulation and for intracellular
trafficking. Several studies have investigated the effect of GDM on lipid carriers in the placenta,
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but using a low number of subjects and without considering the mode of GDM treatment (diet or
insulin) [8,9], which may influence lipid transport.

Insulin signaling is critical for the regulation of both intracellular and blood glucose in
GDM. Insulin cannot cross the placenta [10], but it can bind to its specific receptor IR (insulin
receptor) in the trophoblast membrane [11] to activate insulin signaling pathways via Ras-ERK
(extracellular-signal-regulated kinase) and the IRS (insulin receptor substrate)-PI3kinase-Akt-mTOR
(mammalian target of rapamycin) [12,13]. Colomiere et al. suggested the existence of post-receptor
defects in the insulin signaling pathway in placentas from GDM treated with diet vs. insulin, although
the limited number of subjects of that study (less than 10) could limit relevance of the results [14].
Limited data is available on the level of activated insulin mediators in the placenta of GDM and their
consequences on placental-fetal metabolism.

The clinical GDM treatment might affect both maternal metabolism and the expression of lipid
carriers in the placenta, and it might enhance fetal fat accretion. Both FAT and FATP-1 seem to be
modulated by insulin mediators such as Akt in peripheral tissues like heart [15], adipocytes, and
skeletal muscle [16], while little data is available on placental tissue. Only placental LPL modulation
by insulin has been reported in humans [17], but no information is available for the rest of placental
fatty acid carriers. The aim of this study was to investigate the effect of insulin in both placental
lipid carriers and insulin mediators in GDM women following different clinical treatments (diet or
insulin). We also confirmed the effect of insulin on lipid carriers by in vitro experiments using the
human placenta choricarcinoma-derived BeWo cell line.

2. Results

2.1. Subject Characteristics

The fetal abdominal circumference z-score (z-AC), tended to be higher in GDM (p = 0.071) pointing
to higher fat accretion in these babies. In fact, these differences were statistically significant when the
GDM-Insulin was directly compared with the controls (p = 0.02) by student t-test. GDM mothers had
significantly higher BMI than controls before pregnancy, in the 3rd trimester and at delivery (Table 1).

Table 1. Maternal and Neonatal Anthropometric and Biochemical Features.

Mothers

Control (n = 25) GDM-Diet (n = 23) GDM-Insulin (n = 20) p

Pregestational BMI (kg/m2) 23.2 ± 0.8 b 26.2 ± 1 a,b 28.2 ± 1.3 a 0.005
Placental weight (g) 582 ± 24 b 651 ± 26 a,b 674 ± 34 a 0.045
Placental thickness 38.2 ± 2.1 a 47.8 ± 2.4 b 49 ± 2.4 b,c 0.002
Cesarean Rate 26% 30% 30% 0.060
Gestational age (weeks) 39.5 ± 0.15 a 38.1 ± 0.3 b 38.2 ± 0.2 b 0.000
BMI 3rd trimester (kg/m2) 26 ± 0.7 a 29 ± 1 a,b 30.6 ± 1 b 0.003
BMI at Delivery (kg/m2) 27.9 ± 0.7 b 30.3 ± 1.0 a,b 31.8 ± 1.3 a 0.033
Glucose 3rd trimester (mg/dL) 72.8 ±1.4 a 80.6 ±1.8 a,b 84.0 ± 4.0 b 0.007
Glucose delivery (mg/dL) 63.6 ± 3.7 a 84.3 ± 3.7 b 88.1 ± 7.4 b 0.002
Insulin 3rd trimester (µIU/mL) 15.2 ± 1.4 a 17.1 ± 1.7 a 28.4 ± 5.0 b 0.004
Insulin delivery (µIU/mL) 20.2 ± 5 20.6 ± 3.3 37.1 ± 8.1 0.067
HOMA 3rd trimester 2.7 ± 0.2 a 3.4 ± 0.4 a,b 5.8 ± 1.4 b 0.020
HOMA delivery 3.1 ± 1.0 b 4.5 ± 0.9 a,b 9.9 ± 3.3 a 0.039
TG 3rd trimester (mg/dL) 183 ± 17.7 a 188 ± 10.6 a,b 240 ± 18.3 b 0.028
TG delivery (mg/dL) 222 ± 13.7 220 ± 13.5 256 ± 17.7 0.187
Total FA 3rd trimester (mg/dL) 501 ± 19.4 a 506 ± 17.3 a 627 ± 44.5 b 0.003
Total FA delivery (mg/dL) 517 ± 21 516 ± 14.4 565 ± 18.4 0.121
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Table 1. Cont.

Offspring

z-fetal AC 3rd trimester −0.3 ± 0.2 0.6 ± 0.2 0.6 ± 0.2 0.075
z-fetal AC delivery −0.3 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.071
z-Birth weight 0.3 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 0.482
z-Length baby 0.2 ± 0.2 0.7 ± 0.2 0.9 ± 0.2 0.099
z-BMI baby 0.1 ± 0.25 −0.3 ± 0.2 0.02 ± 0.2 0.474
Glucose cord (mg/dL) 69.4 ± 3.7 67.8 ± 3.5 76.3 ± 6.2 0.390
Insulin cord (µIU/mL) 8.9 ± 1.7 11.3 ± 1.8 8.7 ± 1 0.453
HOMA cord 1.6 ± 0.5 1.6 ± 0.3 1.2 ± 0.2 0.706
TG cord (mg/dL) 42.1 ± 3.6 a 32.1 ± 3.5 a,b 28.8 ± 2.2 b 0.015
Total FA cord (mg/dL) 184 ± 9.4 a 146 ± 4.5 b 155 ± 5.7 b 0.001

Placental thickness and weight were higher in both GDM groups, which might affect placental
fatty acid transport (Table 1). Maternal glucose and insulin were significantly higher in GDM at
the third trimester before any treatment (recruitment); at delivery, only maternal glucose remained
significantly higher in the GDM, although still within the normal clinical range, while insulin tended
to higher levels in the GDM-Insulin (p = 0.067) (Table 1). Maternal insulin at recruitment correlated to
both z-AC at recruitment (r = 0.266, p = 0.025) and at delivery (r = 0.275, p = 0.023). Maternal TG at
recruitment was also significantly higher in the GDM-Insulin with the same trend at delivery. Z-AC
tended also to be associated to TG at recruitment (r = 0.207, p = 0.079). TG and total fatty acids in cord
blood were both significantly lower in GDM, in line with enhanced fetal adipose storage (Table 1).

2.2. Lipases and Lipid Carriers in Placentas from GDM

Contradictory results on placental lipases were found. LPL was significantly reduced in GDM
(p = 0.030), while most of the other carriers tended to higher values, although the differences were
not significant (Figure 1A). Membrane placental protein FAT correlated significantly with cytosolic
A-FABP (Figure 1B), which might enhance fat storage within placental lipid droplet structures.
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Figure 1. (A) Relative protein expression normalized to β-Actin of placental lipases, lipoprotein 
lipase (LPL) (p = 0.030) and endothelial lipase (EL), and lipid carriers fatty acid binding protein 
(A-FABP), fatty acid translocase (FAT), fatty acid transport protein (FATP-1) and fatty acid transport 
protein (FATP-4) in placental tissue from control and gestational diabetes mellitus (GDM) patients. 
Results are expressed as Mean ± SEM). ANOVA followed by a Bonferroni test was used to assess 
differences among the groups. Different letters over the bars indicate significant differences (p < 
0.05); (B) Correlation between placental FAT and A-FABP protein expression.  

2.3. Phosphorylated Insulin Signaling in GDM Placentas 

Both, phosphorylated Akt and ERK increased significantly in placentas from the GDM-Insulin 
(Figure 2). p-Akt signaling tended to be reduced in the GDM-diet group, and in fact, it was 
significantly different if compared directly between the Control and GDM-diet by t-test, which 
might indicate a certain degree of insulin resistance. 

 
Figure 2. Relative protein activation normalized to β-Actin of phosphorylated insulin signaling 
mediators, Ribosomal protein S6 (pS6), phosphorylated extracellular signal regulated kinase 
(p-ERK), phosphorylated protein kinase B (p-Akt) and phosphorylated insulin receptor substrate-1 
(p-IRS1-2) (Tyr) in placentas from control and gestational diabetes mellitus (GDM) patients. Results 
are expressed as (Mean ± SEM). ANOVA followed by a Bonferroni test was used to assess differences 
among the groups. Different letters over the bars indicate significant differences (p < 0.05). 

Figure 1. (A) Relative protein expression normalized to β-Actin of placental lipases, lipoprotein lipase
(LPL) (p = 0.030) and endothelial lipase (EL), and lipid carriers fatty acid binding protein (A-FABP), fatty
acid translocase (FAT), fatty acid transport protein (FATP-1) and fatty acid transport protein (FATP-4)
in placental tissue from control and gestational diabetes mellitus (GDM) patients. Results are expressed
as Mean ± SEM). ANOVA followed by a Bonferroni test was used to assess differences among the
groups. Different letters over the bars indicate significant differences (p < 0.05); (B) Correlation between
placental FAT and A-FABP protein expression.

2.3. Phosphorylated Insulin Signaling in GDM Placentas

Both, phosphorylated Akt and ERK increased significantly in placentas from the GDM-Insulin
(Figure 2). p-Akt signaling tended to be reduced in the GDM-diet group, and in fact, it was significantly
different if compared directly between the Control and GDM-diet by t-test, which might indicate a
certain degree of insulin resistance.
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Figure 2. Relative protein activation normalized to β-Actin of phosphorylated insulin signaling
mediators, Ribosomal protein S6 (pS6), phosphorylated extracellular signal regulated kinase (p-ERK),
phosphorylated protein kinase B (p-Akt) and phosphorylated insulin receptor substrate-1 (p-IRS1-2)
(Tyr) in placentas from control and gestational diabetes mellitus (GDM) patients. Results are expressed
as (Mean ± SEM). ANOVA followed by a Bonferroni test was used to assess differences among the
groups. Different letters over the bars indicate significant differences (p < 0.05).
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Phosphor-S6 (p-S6) was not statistically significant due to high variability in its results. Both Akt
and ERK were correlated with both placental FAT and A-FABP (Figure 3), suggesting that the insulin
signaling pathway could be involved in fat accretion in GDM babies. Moreover, EL was also associated
to p-AKT (r = 0.374, p = 0.003) and to maternal insulin at recruitment (p = 0.325, p = 0.014).
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2.4. In Vitro Effect of Insulin on Lipid Carriers in BeWo Cells

As expected, phosphor-Akt was significantly higher in insulin stimulated BeWo cells compared
with controls (Figure 4A).

A-FABP increased significantly in the insulin treated cells, whereas only a slight trend was
observed for EL and FATP-1 (Figure 4B–D). To ascertain whether insulin could be responsible for
higher fatty acid carriers in GDM placentas, we also preincubated BeWo cells with Akt and ERK
inhibitors (PI3K and MEK, respectively) (Figure 4). Both A-FABP and EL were reduced by the PI3K
inhibitor, but not by the MEK inhibitor, demonstrating the important role of PI3K-Akt in the modulation
of both A-FABP and EL. FATP-1 was reduced by both the PI3K-Akt and the MEK-ERK inhibitors,
confirming the role of these two pathways in the activation of this carrier by insulin (Figure 4).
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Figure 4. Relative protein activation/expression of protein kinase B Akt/fatty acid carriers normalized
to β-Actin of: (A) p-Akt, (B) Fatty acid binding protein A-FABP (C) Fatty acid transport protein FATP-1
and (D) Endothelial lipase EL in BeWo cells preincubated 1 h with PI3K-Akt (LY294002) and MEK-ERK
(PD98059) pathway inhibitors (50 µM) and stimulated with insulin (10 nmol/L) for 24 h. Results are
expressed as Mean ± SEM. A student t-test was used to assess differences among the groups. Different
letters on the bars indicate significant differences (p < 0.05).

3. Discussion

The effects of different GDM clinical treatments (diet or insulin) on the activation of downstream
insulin signaling mediators in human placenta were studied, finding slight placental insulin resistance
in the GDM-Diet, while such resistance was overcome by insulin treatment. In addition, using both
in vivo and in vitro studies, we demonstrated for the first time the relationship between insulin
pathway mediators and enhanced fatty acid carriers in human placenta, which could be one of the
mechanisms involved in fetal fat accretion in GDM.

Systemic measurements of glucose status suggest that the insulin-treated women were
hyperglycemic despite hyperinsulinemia, which may affect birth weight, and the HAPO study also
reported a strong correlation between increased maternal glucose and fetal adiposity, even when
glucose values were below the pathological limits [18,19]. Fetal z-AC, which is a prenatal parameter of
fetal adiposity [20], was associated to insulin and TG at the beginning of third trimester, suggesting
that maternal insulin is affecting materno-fetal structures from that time. An earlier intervention in
GDM patients could be appropriate to reduce fetal adiposity. Moreover, newborns from GDM mothers
treated with insulin tended to the highest values of AC, which could be explained by the enhanced
lipid carriers in placentas and higher storage of fat in adipose tissue in the fetus, although other
mechanisms could also occur. Both the decrease in serum TG and total fatty acids in cord blood could
explain higher fetal fat storage, as suggested by Schaefer-Graf et al. [21]. A previous study suggests
that the placenta could be mainly responsive to maternal insulin in early pregnancy, but not during
late pregnancy [22]. This may explain why maternal insulin at recruitment correlated with z-AC.
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Currently, to understand the role of insulin on GDM pathophysiology and fetal macrosomia is
a challenge. Since insulin cannot cross the placental tissue, its effect on placental metabolism has
been underestimated. Nevertheless, insulin plays a major role in the regulation of the placental
nutrient metabolism; up-regulation of some placental amino acid transporters, through activation of
mammalian target of rapamycin (mTOR) signaling by insulin and IGF-1, was reported in obese women
giving birth to large babies [23]; similar results were found in cultured trophoblast cells [24]. Here,
we demonstrate that insulin clinical treatment might activate lipid carriers through the mediation
of Akt and ERK in GDM patients. Thus, a significant increase of both phosphorylated Akt and ERK
was confirmed in the GDM-Insulin. Our results agree with those of Colomiére et al. who found a
significant decrease in the regulatory p85α subunit of PI3kinase in placentas of a GDM-Insulin, but not
in the GDM-Diet; they suggested activation of the Akt signal in the GDM-Insulin, although they did
not measure such intermediates [14].

The Ras-ERK insulin pathway is another cascade of insulin receptor activation, which has been
less studied in insulin resistance. ERK mediates cell proliferation effects, whereas IRS-PI3K-Akt has
been mainly implicated in metabolic actions of insulin [13]. In placental tissue there are no data
available for the Ras-ERK pathway in GDM. Here, we demonstrate, for the first time, significantly
higher phosphorylated ERK in placental tissue of GDM-Insulin patients, while no changes were
observed between the control and GDM-Diet groups. Recent study has demonstrated defects in
ERK signaling that could be responsible for insulin resistance in the skeletal muscle of women with
polycystic ovary syndrome, but found no changes in Akt signaling [25]. Moreover, in skeletal muscle
of obese subjects alterations in ERK activation have also been demonstrated [26]. The meaning and
consequences of the alteration of ERK pathway in placenta merit further study, since this molecule
seems to be a key for the proper response of placenta to insulin stimulation.

In the present study, fatty acid carriers A-FABP, FAT and EL gradually increased in the GDM-Diet
and GDM-Insulin, but the differences between groups were not statistically significant. However,
there was a significant reduction in placental LPL in both GDM, probably to counteract excessive fat
accretion in the babies, as reported by Radaelli et al. [9]. Hyperglycemia reduces fatty acid oxidation
and increases triglyceride accumulation in GDM [27], which may contribute to fatty acid delivery to
the fetus. Both p-ERK and p-Akt correlated with the lipid carriers FAT and A-FABP, but also to EL,
underlining the insulin-fat storage relationship within the placenta. Moreover, other factors apart from
insulin signaling might also contribute to the trend to enhance fatty acid carriers in the GDM-Diet.

In order to ascertain whether fatty acid carriers depend on insulin receptor activation, we treated
BeWo cells with insulin, and with or without Akt and ERK inhibitors (PI3K and MEK, respectively).
First, we demonstrated a positive Akt response to insulin treatment by the increase in p-Akt, thus
validating BeWo cells as a suitable model to test insulin influence on metabolism. Secondly, we showed
that PI3K inhibition reduced A-FABP, EL, and FATP-1 proteins, indicating that Akt phosphorylation
plays a major role in the regulation of placental lipid carrier. FAT protein was not detectable in these
cells, thus we could not corroborate the association reported on maternal serum insulin and placental
FAT. Nevertheless, Chabowski et al. already reported the translocation of FAT from the cytosol to
the plasma membrane via Akt activation in cardiac myocites, while this effect was not observed
for FABPpm [28]. Our results are also in agreement with Wo et al., who demonstrated the insulin
modulation of FATP-1 via Akt in adipocytes and skeletal muscle [16]. Thus, insulin treatment in the
GDM-insulin induced Akt and lipid carrier activation in the placenta.

We demonstrated the in vitro insulin regulation of EL, FATP-1, and A-FABP in placenta. In clinical
trials, EL was high in placentas from the type I diabetes patients, who obviously required insulin [29].
Gauster et al. reported higher EL in placentas from the obese GDM than controls, but this effect did
not occur in lean GDM, although they did not indicate whether the GDM obese group received insulin
treatment [30]. Similarly, A-FABP was reported to be high in placentas from the obese-GDM, which
could be due to the insulin treatment received by these subjects [31]. In fact, A-FABP was elevated
in trophoblast cells when stimulated with insulin plus fatty acids, but not when stimulated with
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insulin alone [31]. In the present study, A-FABP was the most sensitive carrier to insulin stimulation
at 24 h from all those we analyzed. As a limitation of the present study, to indicate that this time
period of stimulation was used according to the bibliography to evaluate lipid metabolism response in
cells [17,31]. We cannot discard that other times of insulin incubation might differ on the fatty acid
carrier response. In addition, higher number of patients in the in vivo study could confirm the trend
of some results observed on the lipid carriers. Nevertheless, these trends were supported with the
experiments of the in vitro study.

In conclusion, hyperinsulinemia and hyperdislipidemia at the beginning of the third trimester
disturbed placental weight and thickness in the GDM, activating placental insulin mediators.
Exogenous insulin may enhance the expression of some fatty acid carriers in placenta by activating
insulin cascade in the GDM women treated with insulin. Since maternal hyperlipemia is higher in the
GDM treated with insulin, with respect to both GDMs under dietary treatment or controls, it could be
desirable to reduce lipemia in these subjects to avoid excessive placental fat transfer to the fetus.

4. Materials and Methods

4.1. Ethical Approval

The study protocol was approved by the Hospital Ethics Committee (proyect 12965, GDM, Murcia,
Spain) and written informed consent was obtained from all the participants.

4.2. Study Population

Eligible for the study were pregnant women with singleton pregnancy, 18-40 years, nonsmoking,
omnivorous diet, and a fetal Doppler scan within normal reference range at recruitment. The subjects
were recruited in the third trimester of gestation (28–32 weeks) in the Obstetrics and Gynecology Service
of a Clinical University Hospital in Murcia, Spain Three groups of pregnant women were considered;
25 controls, 23 women with gestational diabetes mellitus receiving dietary treatment (GDM-Diet) and
20 women with gestational diabetes mellitus who required insulin treatment (GDM-Insulin).

The controls were selected among healthy pregnant women at routine echography in the
20–22 weeks of gestation. GDM was diagnosed between 24 and 28 weeks of gestation by screening
with an oral challenge of 50 g glucose (O’Sullivan test) [32]. A positive screening result (1 h plasma
glucose concentration >140 mg/dL) was followed by a 3-h oral glucose tolerance test with 100 g of an
oral glucose load. The test was considered positive if two of the four serum glucose values were above
the cut off (basal: 105 mg/dL, 1 h: 190 mg/dL, 2 h: 165 mg/dL and 3 h: 145 mg/dL) according to the
criteria of the National Diabetes Data Group [19]. Metabolic control of GDM patients was assessed
by the endocrinologist who decided diet or insulin based on the glycemic results on fasting glucose
>90 mg/dL and 2 h postprandial glucose >120 mg/dL. Initially, all patients received a treatment based
on diet and exercise. The number of calories of the diet depended on their weight gain until that
moment of dietary advice, and was mainly related to carbohydrate consumption.

4.3. Maternal and Neonatal Anthropometrical Measurements

Fetal abdominal circumference and placental thickness were measured at both recruitment and
at 38 weeks of gestation by an ultrasound scan (Voluson 730 Pro, General Electric Medical Systems,
Kretz Ultrasounds, Chicago, IL, USA) the fetal biometry z-score was calculated using the tables of the
Institute of Child Health of London [33]. Anthropometrical variables of both mother and neonate were
measured at birth, and the z-score calculated using Spanish reference data [34].

4.4. Sampling

At recruitment and during labor, 10 mL of maternal blood were collected. The blood samples at
recruitment were collected under fasting, but not at delivery. We also collected 2 mL of venous cord
blood. Blood serum was separated within 1 h by centrifugation at 1000× g for 5 min.
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Samples of villous from placental central cotyledons were cut and stored at −80 ◦C until
later analysis.

4.5. Biochemical Analysis

Serum glucose and triglycerides (TG) were measured using an automatic analyzer (Roche-Hitachi
Modular PyD Autoanalyzer, Mannheim, Germany). Insulin was analyzed by chemiluminiscence
(DIAsource INS-IRMA; Nivelles, Belgium). Insulin resistance was calculated using the homeostasis
model assessment (HOMA) index.

4.6. Fatty Acids in Total Lipids of Serum and Placenta

Fatty acids were determined in the total lipids of maternal and cord serum, as well as in placental
tissue after Folch extraction [35]. Gas chromatographic analysis was performed on a Hewlett-Packard
6890 (Agilent Technologies, Inc. Palo Alto, CA, USA) equipped with a SP-2560 capillary column
(60 m × 0.25 mm, df 0.15 µm; Supelco, SIGMA-Aldrich, St. Louis, MO, USA).

4.7. Inhibitors and Antibodies

Inhibitors used for cell signaling studies included the PI3 kinase inhibitor LY294002 and the MEK
inhibitor PD98059 (both from Sigma Aldrich, St. Louis, MO, USA) at an optimal/non cytotoxic dose of
50 µM in DMSO. Dose was selected based on previous results from dose response assays (1, 10, and
50 µM).

Primary antibodies used for Western blotting were mouse monoclonal antibodies against Fatty
acid transport protein-4 (FATP-4), A-FABP, phospho-ribosomal protein S6 antibody (ser 235/236)
(Santa Cruz Biotechnology, Dallas, TX, USA), FAT and LPL (Abcam, Cambridge, UK), and
rabbit polyclonal antibodies to FATP-1, phospho-Akt (Ser473), phosphor-ERK (Thr 202/Tyr 204),
phospho-IRS1/2 (Tyr 612) (Santa Cruz, CA, USA), anti IGF-2antibody, EL (abcam) and β-actin (Sigma
Aldrich, St. Louis, MO, USA). Anti-mouse and anti-rabbit secondary antibodies conjugated with
horseradish peroxidase were obtained from Santa Cruz Biotechnology.

4.8. Cell Culture

The human choricarcinoma-derived BeWo cell line was obtained from the European Collection
of Cell Cultures (ECACC), Salisbury, UK. The cell line was authenticated by Sort Tandem Repeats
(STR) profile analysis. Cells were cultured at 37 ◦C in F-12 medium with 10% (v/v) fetal bovine serum,
4.5 g/L glucose, 100 mg/ml streptomycin, 100 IU/penicillin, 100 IU/glutamine in a standard tissue
atmosphere of 20% O2 and 5% CO2.

BeWo cells were seeded (80,000 cell per flask) and cultured for 48 h in the appropriate medium.
Before the experiments, the cells were serum-starved in medium without glutamine for 3 h, and
then preincubated with or without PI3 Kinase inhibitor (LY294002, 50 µM) and MEK inhibitor
(PD98059, 50 µM) respectively without serum. DMSO was tested as vector control (results not
shown). Preincubation was performed for 1 h with PI3K-Akt (LY294002) and MEK-ERK (PD98059)
pathway inhibitors (50 µM) and stimulated with insulin (10 nmol/L) for 24 h in order to evaluate
potential modifications on lipid carrier synthesis [31]. Finally protein extracts from cells were obtained
for Western blotting analysis of p-AKT, A-FABP, EL, FATP-1. All the experiments were performed
by triplicated.

4.9. Protein Extracts for Western Blotting

Protein extracts from 100 mg of placental tissue were obtained as previously detailed [36]. BeWo
cells were washed twice with ice-cold PBS and then treated with cell lysis buffer (Cell Signaling
Technology, Danvers, MA, USA) containing 1 mM PMSF (Sigma, Barcelona, Spain). Protein was
quantified by Bradford assay [37].
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4.10. Western Blotting Analyses

Protein extracts (30 µg from placenta and 20 µg from BeWo cells) were resolved on 12%
polyacrylamide gels, and transferred onto polyvinylidene difluoride membranes (Millipore, Billerica,
MA, USA). Membranes were incubated with primary antibodies overnight at 4 ◦C. Blots were
then probed with the corresponding secondary antibody conjugated with horseradish peroxidase.
Finally, membranes were stripped with Tris/HCl-Buffer pH 2.3 containing 0.1 M β-mercaptoethanol,
and re-probed with anti-β-actin to perform the loading controls. Proteins were detected using a
chemiluminescence Kit (Pierce ECL 2 Western blotting Substrate; Thermo Scientific, Waltham, MA,
USA). Densitometry was performed on all blots using ImageJ software (National Institutes of Health,
Bethesda, MD, USA). Relative protein expression data were normalized for β-actin expression.

Phosphorylated insulin signaling the mediators p-Akt, p-ERK, (Insulin receptor substrate) p-IRS-1
and p-S6 ribosomal protein, as well as the fatty acid carriers FAT/CD36, FATP-1, FATP-4, A-FABP, EL,
and LPL were quantified in placenta.

4.11. Statistical Analysis

The results are expressed as mean ± standard error of the mean (SEM). Differences between
groups were evaluated by ANOVA followed by post hoc Bonferroni analyses. For the cesarean rate,
a chi2 test was performed. The minimum sample size to detect a significant difference between the
groups with respect to the cord blood fatty acids (type I error α = 0.05 and type II error β = 0.2) was
estimated to be 17 children/group, based on a minimal difference of 20% between means.

In the cell cultures, the differences between treatments were analyzed by student t-test.
The significance level was set at p < 0.05. Pearson correlation analyses were also performed. The
statistical analyses were evaluated by the SPSS® 16.0 software (SPSS, Chicago, IL, USA).
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